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Let’s see through the mist of buzzwords

Depending on the definition one can distinguish four major approaches
within machine learning:

1 Supervised learning (neural network approximation, regression,
labelled classification, ...)

2 Unsupervised learning (clustering, dimension reduction, anomaly
detection, ...)

3 Semi-supervised learning (generative models, e.g. GANs...)
4 Reinforcement learning (learning how to play games, ...)
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Examples.
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Example I: AlphaFold

Proteins perform numerous functions, from storing oxygen in tissues
or transporting it in a blood to muscle contraction and relaxation or
cell mobility.

They come in three-four structures:

Primary 
structure

Secondary 
structure

Tertiary 
structure
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Example I: AlphaFold (cont.)

The problem of protein folding:
I Consider a protein sequence of 100 amino acids.
I Each amino acid can adopt, at a minimum, about 10 di�erent

conformations due to the angles it can attain.
I So the total number of conformations is given by 10100.
I Assume that the rate of conformational sampling is about 1014

conformations per second.
I Then finding the teritary structre by a random search algorithm

might take about 1018 years, which is more than the age of the
universe.

AlphaFold uses transformers (a special architecture of neural
networks) to predict the tertiary structure of proteins based on their
amino acid structure.
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Who knows this picture?
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Example II: Midjourney

Midjourney is a model to generate picture based on input text.

It uses the so called di�usion technique, which starts with a prior
noise distribution and is creating an image by solving a backward
stochastic di�erential equation (BSDE).

It is free to use and accessible via a Discord bot.
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Example II: Midjourney (cont.)

Latest version only accessible with a premium account.
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Supervised Learning.
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What means supervised learning mathematically?

Consider an input space X and a output space Y. Moreover, assume that
there exists a unknown function

G – f : X æ Y,

where G is a function space, also called hypothesis space. Then based on
some given pairs

� := {(x1, f (x1)), . . . (xN , f (xN))} œ (X ◊ Y)N

supervised learning aims to approximate the function f based on �.

Niklas Walter Intro Deep Learning June 2023 15 / 49



Examples for X , Y and G
Normally in the real world, the data we can observe/measure lies in the
Euclidean space, i.e. X = Rn or Y = Rm. For examples:

1 a d-dimensional timeseries with N observations lies in Rd◊N

2 a RGB coded picture lies in Rh◊w◊3

3 an audio signal recorded on N timepoints lies in RN

The hypothesis space G could vary more and might be based on our
assumptions. So for example:

1 G = {f : X æ Y linear} refers to linear regression
2 G = {f : X æ Y, f (x) =

qn
i=1 ai sin(bix) + ci cos(dix)} could make

sense knowing the data is periodic
3 G = Ck(X , Y) makes sense if the data looks continuous/smooth

In the following, we will focus on X = Rn, Y = Rm, G = Ck(X , Y).
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Deep Neural Networks.
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What is a (feedforward) deep neural network?

Definition 1

Let n, m, L œ N. A function Â : Rn æ Rm is a (feedforward) deep neural
network (DNN) with L Ø 3 hidden layers and single activation function Í if
it can be written as

Â = WL ¶ (Í ¶ WL≠1) ¶ ... ¶ (Í ¶ W1), (1)

where Wl : Rdl≠1 æ Rdl for l = 1, ..., L is an a�ne function

Wl(x) := Alx + bl , x œ Rdl≠1 (2)

defined by weight matrices Al œ Rdl ◊dl≠1 and bias vectors bl œ Rdl for
d0 := n and dL := m.
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How do they work? - They are quite easy objects!
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Why are those functions so interesting? - They are

universal approximators.

Theorem 2 (Exemplary universal approximation theorem)

Consider the input space Rn, output space R and ‡ : R æ R continuous
and non-constant. Moreover, let f œ C0(Rn,R). Then for every Á œ (0, 1)
there exists a DNN Â : Rn æ R with L layers such that

sup
x

|f (x) ≠ Â(x)| < Á.
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Why are those functions so interesting? - They are

universal approximators.

Theorem 3 (Exemplary universal approximation theorem)

Consider the input space Rn, output space R and ‡ : R æ R continuous
and non-constant. Moreover, let f œ C0(Rn,R). Then for every Á œ (0, 1)
there exists a DNN Â : Rn æ R with L layers such that

sup
x

|f (x) ≠ Â(x)| < Á.

This is a nice motivation to work with neural networks to approximate
functions but is still quite ”black-boxish”. We do not know anything about
their architecture.
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Why are those functions so interesting? - They are

universal approximators.

In the recent years so called ”quantitative” universal approximation
theorems were established.

Theorem 4 (Exemplary universal approximation theorem 2)

Let [0, 1]n be the input space and R the output space. Then there exists a
constant C > 0 such that, for every f œ C1([0, 1]n,R) with Îf ÎC1 Æ 1 and
every Á œ (0, 1/2), there exists a DNN Â such that

maxx |f (x) ≠ Â(x)| < Á

and
# of non-zero matrix/vector entries Æ CÁ≠2n

and
# of layers Æ C log(1/Á).
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Extension I: Recurrent neural networks (RNNs)
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Extension II: Convolutional neural networks (CNNs)

Lion

Tiger

Zebra

Convolution + Pooling Convolution + PoolingInput

Kernel

1 0 1 0 1 0
0 1 1 0 1 1
1 0 1 0 1 0
1 0 1 1 1 0
0 1 1 0 1 1
1 0 1 0 1 0

1 0 1
0 1 1
1 0 1

1 2 3
4 5 6
7 8 9

*

331
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Generative Models.
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Problem Formulation and di�erent approaches

Consider we are given a dataset Y real , which is drawn from an
unkown distribution Preal .

The aim of generative models is to learn the distribution Pfake so that
Pfake ¥ Preal . Hence, the aim is that if we sample Y fake ≥ Pfake then
the sample should ”look like” the original data.

There are four main approaches to generative modelling:
1 Generative Adversial Networks (GANs)
2 Variational Autoencoder (VAE)
3 Flow-based models
4 Di�usion models
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Generative Adversial Networks (GANs)

Generative Adversarial Networks don’t work with any explicit density
estimation.

It is based on a game theory approach with an objective to find Nash
equilibrium between the two networks, Generator and Discriminator.

Idea: We sample from a simple distribution like Gaussian and then
learn to transform this noise to data distribution using universal
function approximators (such as DNNs).

I The generator G takes the noise as input and transforms it and
passes it to the discriminator.

I The discriminator D aims to distinguish between the data from
the generator G and the original data distribution.
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Generative Adversial Networks (GANs) (cont.)

A GAN’s structure can be displayed as follows
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Generative Adversial Networks (GANs) (cont.)

Mathematically, the game is defined on the probability space
(�, F ,Preal).

The generator’s strategy set is given by

{Pfake | Pfake probability measure on (�, F)}.

The discriminator’s strategy set is given by

{D | D : � æ [0, 1] measurable}.

The optimisation problem is given by

min
Pfake

max
D

Ex≥Preal [log(D(x))] + Ex≥Pfake [1 ≠ log(D(x))].
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Generative Adversial Networks (GANs) (cont.)

In practice the measure Pfake is usually implemented as the
pushforward Pnoise ¶ G≠1, where Pnoise is the distribution of the input
noise.

This gives rise to another formulation of the GAN game

min
G

max
D

Ex≥Preal [log(D(x))] + Ez≥Pnoise [1 ≠ log(D(G(z)))].

The discriminator aims to attain the value 1 when evaluating data
coming from the original data.

The generator aims to pass data to the discriminator such that it
attains 1.

In conclusion, the discriminator is mainly a critic providing feedback
for the generator, about ”how far it is from perfection”.
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Wasserstein distance and WGAN

So it might makes sense to think of a di�erent metric to measure how
far something is from perfection.

One possibility is to consider the Wasserstein-1 metric which has the
following dual representation

W1(µ, ‹) := sup
Îf ÎLipÆ1

Ex≥µ[f (x)] ≠ Ex≥‹ [f (x)]

for two probability meaures µ, ‹.

For the Wasserstein GAN (WGAN) the discriminator’s strategy set is
given by

{D | D : � æ [0, 1] measurable, ÎDÎLip Æ 1}.

Niklas Walter Intro Deep Learning June 2023 42 / 49



Wasserstein distance and WGAN (cont.)

The WGAN optimisation problem is defined as

min
Pfake

max
D

Ex≥Pfake [D(x)] ≠ Ex≥Preal [D(x)]

In fact, in the WGAN game the discriminator provides a better
gradient than in the ”normal” GAN game.
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Market generators

Definition 5 (Market Generator)

We refer to a generative model in a financial time series context as a
Market Generator. That is, to neural networks that are designed to
approximate the underlying distribution of an underlying market from a
data sample given in form of a time series, so as to generate new data
variations of the learned distribution.

Some reasons why one need to generate synthetic data:
I Lack of training data: There are many reasons in practice why

one might face a lack of available training data. Insu�cient
datasets may lead to a poor training of machine learning models
and hence inconclusive results.
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Market generators (cont.)

I Risk management: The risk management of portfolios often
requires data points of bad scenarios to better estimate tail risk
measures. However, historical data point from extreme events
are normally rare and hence generated paths help a lot with
assessing the underlying risk.

I Backtesting: In many applications such as the development of
trading strategies it is crucial to run backtests to measure how
the strategy would have performed in a realistic environment in
the past. Synthetic datasets would enable robust backtesting
with less risk for overfitting.
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Market generators (cont.)

The problem of generating realistic market data was normally solved
through taking samples from a parametric model, e.g.

Y
]

[
S0 = s,

dSt = µSt dt + ‡St dWt .

However, making assumptions on µ and ‡ is very strong. Therefore,
we aim to build a non-parametric market generator.

One possible approach could be to replace the drift and di�usion by
DNNs, i.e. Y

]

[
S0 = Â◊

0(V ), V ≥ N (0, 1),

dSt = Â◊
1(St) dt + Â◊

2(St) dWt .
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Market generators (cont.)

So assume we want to generate 16 synthetic datapoints for an
observable asset Sreal and we build the generator G of the form

Y
]

[
S fake,◊

0 = Â◊
0(V ), V ≥ N (0, 1),

S fake,◊
t = S fake,◊

t≠1 + Â◊
1(S fake,◊

t≠1 ) + Â◊
2(S fake,◊

t≠1 )(Wt ≠ Wt≠1)

for t = 1, . . . , 16.

Then the WGAN game the market generator needs to solve can be
formulated as

min
◊

max
Îf ÎLipÆ1

E[f (S fake,◊)] ≠ E[f (Sreal)].

for S fake,◊ = (S fake,◊
0 , S fake,◊

1 , . . . , S fake,◊
16 ).
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Market generators (cont.)

Example of generated paths:
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Questions?
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